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1. INTRODUCTION

Let X and Y be real Hilbert spaces, and let L(X, Y) denote, as usual, the
space of all continuous linear operators from X into Y. For 4 ¢ X, we say
that an element 0 € X A-interpolates a given x € X if

(0 —x)Ekerd =4 .

The set of all elements which interpolate x in this sense will be denoted by
|x].
A projection p € L(X, X) is called an interpolation projection if

ker p=ker A,

and the set of all such interpolation projections is denoted by 7°(1).
Suppose there is another Hilbert space Z, and an operator T € L(X, Z)
which satisfies

ker T ker 4 = {0},
range T is closed, (3

dim{ker T} =¢q < o0.

Then, it is known (cf. [3]) that the minimization problem

inf{| Ty|: y € |x]} (H
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has a unique solution, which we will denote by o (o, will be called a spline.}
It is easy to see that the mapping
X0

v

determines an interpolation projection. It is called a spline projection.

2. CONVERGENCE OF INTERPOLATION PROJECTIONS

Suppose we have a sequence of sets A4, c X, and the associated sequence
of sets 7(A4,) < L(X, X). We are interested in studying the convergence

pn_) l’ Wlth pne'w(An)’
where | denotes the identity operator on X. We recall the following well-

known (cf. {9]) consequence of the uniform boundedness principle and the
Lebesgue inequality || x — p,x|| <|[1 — p,| - dist(x; range p,).

PROPOSITION 1. An arbitrary sequence of projections p, in L{X,X)
converges to 1 iff

dist(x; range p,)—» 0 asn— o, vx e X. (2)

and
p.li<C for all n (i.e., | p,} are uniformly bounded in norm). (3)
As a simple modification of Proposition 1, we have

ProposITION 2. For any sequence {p,} of interpolation projections,
where p, € P(A,), the conditions

Ipll<C  foralln, (4)
dist(x; span A4,) = 0, Vx € X, (C)
imply the weak convergence

p, = 1. (5)
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Proof. Since ker p, = ker A, the following implications prove the result:

Ipli<C ) Ipll<C
dist(x; span4,)— 0, <« (dist(x; ker p,)—>0
Vxe X 5 vxeX
s lprll<C
<> ¢ dist(x; range p¥)—=0; ,
g Vxe X

< p¥—>1=p,-»"1, where p¥ denotes the adjoint operator associated
with p,. |

Remark. 1t is easy to see that the last implication in the proof of
Proposition 2 cannot be reversed. Thus, condition (C) is not necessary in
general. On the other hand, if

ker A, o> kerd,,, for all n, (6)

then (5) implies (C). To see this, suppose that (5) is valid. Then, for every
X € X, p¥x—"x. Hence (cf. [11, p. 120}), some sequence (y,) with y, in the
convex hull of (p*x)" | converges strongly to x. But then if also (6) holds,
we have y, € span 4, hence the lim,__ dist(x, span A4,) is zero.

n—o0C

3, CONVERGENCE OF SPLINE PROJECTIONS

Suppose that we have a sequence of sets A, < X such that conditions (3)
hold for all n. i.e.,

ker A, Nker T'= {0}, Vn, (7)
range 7 is closed, 8)
dimker T=¢q < o0. ®

Then, we can consider the sequence of spline projections p,. By definition,
each p, has the minimum norm property

I Tp, x|l <l Tx]. (10)

Lemma 1. Suppose conditions (7), (8), (9) and (C) hold. Then the
sequence of norms || p,| is bounded.

Proof. Let P and Q be the orthogonal projection onto ker T and ker' T,
respectively. Then, according to the representation

X=kerT®ker T,
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every element x € X can be written in the form
x=Px+ Qx, where Px&ker7, Qxe&ker T.

The restriction of the operator T to ker 7 is an invertible operator on the
range of 7, and since the range of T is closed. this inverse operator can be
extended to the whole space Z. (This extension will be denoted T .)
Therefore, we have

10, Xl =IT Tp, x| < [T [ Tp,x| <IT {IITxl

the last inequality following because of the minimum norm property (10).

Now, we have to prove that also the sequence || Pp,| is bounded.

Let the sequence s,,..,s, form a normalized basis for the finite-
dimensional space ker 7, i.e., ||s,|| = 1. Condition (C) allows us to find a
sequence [, ; € span 4,, such that f, ,—"s; (strong convergence) for all j =
l,...,g. In particular, for sufficiently large n we have

1
s, — /1l < ; {for all j=1..... q),

But Ps;=s;, hence

. |
“Sj“ an/H = HP(S},- “fn,j)‘f < MS/*f”_,‘i[ < "q".

and

q
Nos;—Pf, < L

Jol

Therefore (cf. |7, p. 197]), the elements Pf,, ; form a basis in ker 7. Let

L o Ynr
Wn.l"ffhl’ Onar s HPWnIH ’
S R Y NNV TUTE S
Ve =Jus n 22 £ @y 1) On s n2 - | Py, .| ’
etc.
Yk ::fn.k - (an,k7 P(pn,k I)(Dn.k—l - (an.k’P(pn-l)(p”-l;
9 =Lk
nk HPWnk“

for all k=3.....q.
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One can observe that all the elements f, ;; v, ;; ¢, ; converge to some
elements s;, w;, ¢; in ker T, and so do their projections Pf, ;; Py, ;; Po, ;.
Moreover, since f,y;,9; are elements of ker 7, their corresponding
projections converge to the same elements, and we obtain the uniform boun-
dedness of the sequence ||¢, ]I

At the same time, Py, , is just the Gram—Schmidt basis according to the
basis Pf, .. Hence, the elements Pp,x can be expressed in the form

G
Ppnx = }__. (Ppnx’ P(pn.j) P(pn.j'
Jed

To prove the lemma, we have to prove that the absolute values
I(Pp,x, Pp, ;) are bounded uniformly by #.
Indeed, we have

(Ppnx’ Pwn.j) = (p,,X, P(pnj)
= (pnx’ wn.j) - (pnxﬁ Q(pnj)
= (p,,X, (on.j) - (Qpnx’ ¢n.j)'

Previously, we proved that || Qp, xi; Il@, /II; | Py, ;i are uniformly bounded,
so that |(Qp,x, ¢, ;)| are also uniformly bounded. On the other hand, ¢, ; €
span A4,, x— p,x € ker 4, and thus

I(pnx’ (pn,j)' = '(JC, (pn.j)] g ”x” ”(pn.j”y

which is again bounded, uniformly in 7.
To put all these results together, we have proved that the elements

p.xll=1Pp,x + Op, x| < Qx| + N [(Pp,x, Po, )| Po,

F=1

are uniformly bounded, which proves the lemma.

THEOREM 1. Under the conditions of Lemma 1, spline projections
converge strongly to the identity operator.

Proof. Lemma 1 and Proposition 2 give

pn—l; 1

Hence, since

Tp,— T, (1)

n
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we have
| Tx]| < lim || 7p, x].

On the other hand, from (10), we obtain that

17p, x| <[ Tx|
and thus

1 Tp, x| = || Tx]l.
Combining the last result with (11), we have the strong convergence

Ip, - T.
Thus, using the notations of Lemma 1, we obtain
Qp,x=T Tp,» T Tx=Qx.

At the same time, the sequence Pp,x belongs to the finite-dimensional space
ker T, where weak convergence implies strong convergence. Hence,
Pp, — Px, and thus

p,x=Pp,x+Q0p,x->Px+0x=x. 1

4, EXAMPLES

In this section, we shall investigate condition (C) in some particular cases.
First, we shall prove

PROPOSITION 3. In an arbitrary Hilbert space X, condition (C) holds iff
the conditions

z,EkerAd,, {12)
2l < 1 (13)

imply
z, =5 0. (14)

n

Proof. Let P, be the orthogonal projection on span A4,, and let (C) hold.
Then, | P,|l= 1 and by Proposition 1

Pl
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Suppose a sequence {z,} satisfies (12) and (13). Then, (I — P,)z, =1z, and
for every x € X,

‘(x* zn)‘ = |(X, (1 - Pn) Zn)‘ = |(X - an! Zn)l < Hx - anH - 0.

Conversely, let (12) and (13) imply (14). Then, for a given x € X, the
elements z, = (x — P,x)/|| x|| satisfy (12) and (13). Thus, P,x—" x. But, the
P’s are orthogonal projections, and thus P,x — x.

Let 2 be a compact domain in R*, and let H7(£2) be the Sobolev space of
function with the finite norm

“X([)|2: }_ Hbax(t)”i:(m’
fal<m
where
5a,+~~~+n‘
= t=(t,,..t,)E Q2
8[?' atn\ ( 1 x)
a=(a, .. ) lal=a, + -+ +a,.

To ensure the compactness of the imbedding HT(2) < C(£2), we let 2m > s.
We will also need the subset S < H7(£2) of all point evaluations, i..,

/ES iff there exists a point t € 2 such that
(4, x) = x(¢) for all x.

In this case, we denote 6 by J,. It is easy to see that S is dense in H}(2),
provided H7 ()< C(£2). Indeed,

(x,0)=0, VéES,
implies
x(t) =0, Vi€ 2,

and thus x = 0. Therefore, if we have to prove that z,(£) >" 0, it is enough to
prove that z (t} - 0, Vr € 2.

ExaMPLE |. Let 4, ={f;"}5"] be a set of points in 2 (e(n) is some
function dependent on n); and let

e(n)
APx=x(t{"): X=H7(Q) and A=) A"}

Ji=1

ProposITION 4. Condition (C) holds if for any point t € £2, there exist
t,€ 4, such thatt,—t, ie., 2=Ilim, 4,

.
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Proof. It is clear that

ker A, ={x&€ HY(Q2):x(t}")= 0.V

l....,e(n)t.

Suppose we have a sequence |z, | satisfying (12) and (13). We have to prove
that for every 1t € 0,

z, (1) 0.
Suppose ¢, € 4, tends to ¢. Then,

Zn([):Zn(l)W' Zn(.tn)' (15)

On the other hand, z,(¢) is uniformly bounded in HY(£2) and thus it is

compact in C{£2). This implies the equicontinuity of z,(r) and hence, the
difference (15) tends to zero. 1

ExampLE 2. Let 2 =0, 1|, let 4, be defined as in Example 1, and let

e
PUC L L
S P

e J 3in)eln)
. where A, = {400

First, recall the following well-known property of the Steklov functions (cf.

[1, p. 174]). If s is the midpoint of the interval [a,b], then for every
absolutely continuous function x{f),

NS b—a
x(s)fE‘x(t)dt‘gw( > ;x),

where w(-; -) is the modulus of continuity.
PROPOSITION §.

Condition (C) holds if [0, 1| =1lim 4,.
Proof.  First, define

_ !(»") +Z(4'”
dyi= s =2 = Lese(n) = 1

Then, for every ¢ € £2, there exist a sequence s, € Zn such that
S, L

Consider the sequence {z,} satisfying (12) and (13), i.e., ||z, || is bounded and
1 e
m o | za(t)dt =0, Vji=1..,e(n)— L
Loy =4y,

o
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Since for each » there exist j = j(n) such that

N 1_(/',1')1 + (;'1)
W=y
we obtain

lz}l(t)' = lzn([) - ZII(SPI) + ZH(SH)I
: ;’” z,(t) dt‘

S oam
£

< lzn(l) - zll(s)l)‘ +

Z,,(S”) - t(n) — I(n)
it i

(n) n)
. li

<z = 2,050 + o (T2, 0).

By the equicontinuity of {z,(¢)}, the above sum tends to 0. 1

5. FiNaL REMARKS

As a simple application of Theorem |, one can obtain the proof of the
convergence of all examples of spline-functions given in [2], under the
above-mentioned conditions on A,,.

The convergence of spline projections was proved earlier in |5, 6, 8-10]
under the additional assumption

ker A, >kerd, ., (16)

which in some particular cases means that the interpolation knots are nested.
On the other hand, condition (16) is not satisfied by interpolation of
equidistant points, or by Chebyshev points, etc. In contrast, Theorem 1 does
not contain this defect. On the other hand, the remark following
Proposition 2 shows that under assumption (16), any other condition on A,
(such as (V ker A4, =@ or (J span 4, being dense in X) implies (C).
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